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I. INTRODUCTION

The advent of high power pulsed lasers now makes it possible.to
heat a dense plasma to extremely high temperatures. Because of the
laser's ability to create plasmas that are both very hot and dense,
this type of heating is an attractive approach to achieving a control-
led thermonuclear reaction (CTR). However, an important limitation on
the maximum temperature that can be created arises from the plasma
motion. During the laser pulse the plasma may begin to expand and much
of the thermal energy would be converted to directed kinetic energy of
the plasma motion, as was first noted by Basov! and Dawson®.

The recent development of powerful sub-nanosecond Q-switched
lasers and mode-locked picosecond lasers makes it possible to overcome
the problem of expansion during the heating process. For appropriately
short laser pulses, the plasma can be heated to thermonuclear tempera-
tures before significant macroscopic fluid motion begins. The
irradiation of a plasma by these short laser pulses then becomes a
stationary heating problem.

A study has been made of the stationary heating of a one-dimensional
plasma with an arbitrary density profile. The purpose of the study was
to determine the fine details of the heating process as well as the
overall features. The spatial distribution of temperature is one detail
of interest which will hold the key to the plasma motion that will
follow the heating process. Another detail of interest is the fraction
of laser energy that is lost by reflection from the nonuniform plasma.

Several theoretical investigations of laser plasma heating have
been made; but most models have neglected the fine details and concen-
trated on over-all results, e.g., the temperature achieved. Previous
investigations have also used time scales in which plasma motion is
significant.

A study by Fader! considered the expansion of a spherically sym~
metric plasma subject to Q-switched laser radiation. The expansion of
.the plasma was found to be a major limitation on the temperatures
achieved according to both numerical and analytical calculation. This
study assumed spatially uniform absorption throughout the plasma.

A study by Kidder? also considered the motion of a spherically
symmetric plasma but with irradiation by a radially convergent light
pulse. His numerical study also showed the limitation of expansion on
the temperatures achieved.

Dawson, et al., studied the over-all absorption characteristics of
a one—dimensional nonuniform overdense plasma.3 Without studying the
details of absorption, they found the length of plasma necessary to ade-~
quately absorb the radiation.



This paper also uses a one-dimensional nonuniform plasma and con-
siders the entire heating process for time scales sufficiently short
that plasma motion can be neglected. The results indicate that for a
thick underdense region, a heating wave propagates into the plasma; and
for a thin underdense region, the heating is simultaneous-- with an ex-
treme hot spot appearing at the critical density (where the plasma fre-
quency equals the laser frequency). The heating wave phenomena has been
mentioned before by Zel'dovich and Raiser” and arose in the numerical
studies of Kidder®? and the analytical studies of Rehm.

Another result is that maximum temperature or other optimizing condi-
tions can be achieved by proper tailoring of the initial density profile
and plasma size. The idea of tailorin§ the plasma to optimize the results
was figst suggested by Daiber, et al.,” and later in another scheme by
Lubin.

IT. MODEL

The plasma is taken to be a one-dimensional nonuniform fully ionized
gas being irradiated by a laser of wavelength A_ at normal incidence.
Figure 1 is a diagram of the configuration. Thé initial density and
temperature profiles are arbitrary to the extent that a fully ionized
gas is a valid assumption. The plasma is assumed to be a dense ideal
gas mixture of electrons and ions such that there is charge neutrality
at every point for all times.

The one-dimensional two-temperature continuum equations will be
used with the addition of terms accounting for radiative emergy addition.
The electromagnetic force will be neglected since its effect is small
compared to the effect of thermal forces. Also, a form of the radiative
transfer equation is added which neglects thermal and bremsstrahlung
radiation. The radiative transfer equation is simplified to account only
for laser radiation entering the plasma (+ x direction) and does not take
into account the reflection of radiation that would occur if the plasma
is overdense (where the plasma frequency equals the laser frequency).
If the laser radiation does penetrate to this "critical density," then-
appropriate calculations must be made to account for the reflected light.
The absorption coefficient used is that of inverse bremsstrahlung.

If the plasma is overdense, then x = R will define the point at
which the critical density p. occurs. If the plasma is not overdense
at any point, then x = R gives the rear edge of the plasma.

Non-Dimensionalization Scheme

The length scale used is R . The time scale is the laser pulse
length t, since only the heating process is considered in this paper.
Hence, tge independent variables, dimensionless distance and time will
always be of order one or less. The temperature scale used for both



electron and ion temperature is T, and is defined as the temperature
change that would arise if all the energy in the laser pulse were add-
ed uniformly to a critical density plasma of thickness R . Then

r o oA (1)

o 8/2kn R
ec

where Jo/A is the energy contained in the laser pulse per unit area of
plasma, k is the Boltzmann constant and ng. is the critical electron
density (where plasma frequency equals laser frequency) given by

4ﬂ2€omec
n = O (2)

Ao ©
The density scale is the critical density, i.e., the mass density which
corresponds to the critical electron density, pe = mijnec/Z. The pres-
sure scale p, is the pressure that would arise in a perfect gas at tempera-
ture T, and density p.. The velocity scale is the acoustic speed for a
perfect gas at pgy and pPg, i.e., aoz = 5po/3p.. The electron and ion
entropies are scaled using the constant volume specific heat. The absorp-~
tion coefficient, electron-ion equilibration time, and the electron and
ion thermal conduction coefficients are taken from Spitzer.9 These are
all based upon a scale using a density pe and a temperature T, ;

3
- 2 /2
K, = constant p_ /To (3)
= constant T 3/2/p (4)
eq, ) c
— 5
Ke,io = constante’i T, /2 (5)

The radiation intensity scale is the average laser intensity during the
pulse.

Io = J,/A¢, (6)

Summarizing, the dimensionless variables are:

Distance y = x/R Absorption
coefficient K = k/Kg
Time T = t/t Fluid
P velocity U = u/ao



Density z = p/p Electron
¢ entrop g =8/C
y e e’y
Pressure I =p/p Ion
° entropy o, =8,/C
i i’y
Electron
temperature Ge = Te/To Intensity i = I/Io
Ion
temperature 6; = Ti/To (7
Parameters

Using the non-dimensionalization scheme described, five parameters
arise which control the plasma behavior. The first parameter is

€ = aotP/R (8)

€ is the ratio of the laser pulse time to the time for an acoustic wave
to traverse the underdense region. If € << 1, then the pulse length is
so short that essentially no plasma motion occurs. If € 2 0(1l), then
significant motion occurs before the pulse ends.

o= KOR (9)

0 is the ratio of the thickness of the underdense region to the absorp-
tion length scale. The absorption length is the reciprocal of the
absorption coefficient. If o << 1, then the plasma is nearly transparent
to the radiation. If the plasma is overdense, then the radiation will be
reflected and the reflected beam will be negligibly reduced in intensity.
The result will be to effectively double the absorption coefficient. If
o >> 1, then the plasma is nearly opaque to the radiation.

= 1
A tp/teqo (10)

A is the ratio of the pulse time to the electron-ion equilibration time.
If A << 1, then the electrons will tend to be heated by inverse
bremsstrahlung; but the ions will remain nearly frozen during the laser
pulse. If A >> 1, then the electron and ion temperatures will be tha
Same.

_ 2
Ne,i = tpKe,i /0 C,R (11)

(o}



Ne,i 1is (for -electrons and ions respectively) the ratio of pulse time to
the time for a thermal diffusion wave to traverse the underdense region.
Then, for example, if ng << 1, there will be very little thermal condyc-
tion by the electrons during the laser pulse. If Ne >> 1, the thermal
conduction will be strong, tending to equalize the temperature of the
plasma.

Equations

The governing equations in dimensionless form are

14 14
3t + € _3}7 =0 (12)
L U, 3 1 A, _
3T + E[U—a-}7+5 z ay/] 0 (13)
2. 7/2
e} 90 6 -8 3%6
e 4 e i 2/7 e
+ gUs— = oK - A + n (14)
3T 3y z6, 3 3/2 6 e 78, 52
30 %0, . 0 -8 2/7 32917/2
+ & U— A + n. (15)
3T 3y ee3/2 5, 176, 7,7
M L 4ki = o0 (16)
oy
2
K = S A (17)
0 32—
I = z[6 ++0.] (18)
e Z i
[0}
8 = C2/3e € (19)
e
ag
o, = 2/3 1 (20)



The equation for absorption coefficient (17) breaks down for densities

very near the critical density (7 = 1). There is actually an extremely
high value of the absorption coefficient at that point, but not an infinity.
Hence, solutions that are found will probably have a singularity at that
point and thus cannot be trusted for [ very near one. This singularity
will usually be integrable so that integrations with respect to y over

the singularity will describe the actual case fairly accurately.

The initial conditions will be an initial temperature and an initial
density profile. The boundary conditions will be on the intensity; the
intensity entering the plasma will be d®/dt where & is the fraction of the
laser energy delivered up to time T ;

1

d =
JO/A

t
j‘ I(t)dt (21)
(o]

N

so that @ = 0 at T=0 and = 1 at T = 1 (the end of the pulse).

ITI. EQUATIONS FOR A STATIONARY FROZEN
NON-THERMALLY CONDUCTING PLASMA

For sufficiently rapid energy addition, the plasma may be significantly
heated before the random thermal energy begins to change appreciably to or-
dered fluid motion. The heating may be rapid enough that the diffusing ef-
fect of thermal conductivity will not have a significant effect. Also,
with sufficiently rapid heating, the equilibration processes whereby the
heated electrons transfer their energy to the ions will not have proceeded
to any significant extent.

The problem studied in this paper is the case where all of these con-
ditions appear simultaneously. Then the heating is essentially a stationary,
non—-thermally conducting process whereby energy is transferred from a beam
of light to the electrons in the plasma. No energy is transferred between
electrons by thermal conduction, and no energy is transferred to the ioms,
either by electron-ion equilibration or by ordered plasma motion.

The cases in which plasma motion, thermal conduction, and electron-—
ion equilibration become significant during the laser pulse form problems
for later study. Another interesting problem for later study is the be-
havior of the plasma after being heated in a stationary, non-thermally
conducting, nonequilibrium manner (as studied in this paper).

The requirement for a stationary plasma is that € << 1, and for a non-
conducting plasma, Ne,i << 1. Also, for a plasma in which the electron
temperature is large compared to the ion temperature, then A0o/0i << 1 is
required.

For the limit €, A, A0g/04i, Ne,i > 0, the governing equations simplify
considerably. The continuity equation (12) becomes 3Z/3T = 0 so that the



density profile remains stationary ¢ = Z(y). The momentum equation (13)
becomes 9U/3dT = 0 so that the velocity remains zero throughout the pro-

.cess. The electron entropy equation (14) becomes

aoe ok 1 (22)

oT T ee
The radiative transfer equation (16) remains the same, as does the ab-

sorption coefficient (17), and all three equations of state (18), (19),
and (20). The electron entropy equation (22) plus the radiative trans-
fer equation (16), the absorption coefficient (17), and one equation of
state (19) form a complete set of four equations in four unknowns.

These can be reduced to a single equation for electron temperature.
Solving (19) for Oy, taking the time derivative and eliminating
90o/3T using (22) yields

aee oK
-—a?=—c— i (23)
Then solving for i and using (17)
ae /2
g_/ l1-c e (24)

i=5 oz 9T

Differentiating with respect to y

2, 5/2 _ 1 5/2
a _ 2 ST P ee 2 1 2; d 3ee 25
oy 5 oz oyoT 5 Oﬂ;zv/l_—_f dy oT

Combining (24) and (25) using (16) to eliminate i and (17) to eliminate
K yields

82 5/2 5/2 2 36
.gz e + ag e
£) dy 9T A=7% T

which can be immediately integrated once on T to give

2 __fEL___
5 Odyot

2 1-
5 r(@1

5/2
2 98,
5 Oy

1
1-3z 2
2 2 dg , 5/2 14
- = 6 + 9 = f£ 26
f(y) arises out of integrating with respect to T and is determined by

the initial conditions. If the initial condition is 6e(y,0) = Ge°(y),
then (26) becones



1

1-+7¢
- 23 5/2 _ 5 o5/2, 27 2> dg ., 5/2 5/2
0 5 9y [ee ee ] 5¢(1 -¢t)dy [ - ee0 ] _
(27)
.
+-X—[6_-060°]
/1 -¢ e

This is the equation governing electron temperature for a stationary,
frozen, non-thermally conducting plasma.

It is noteworthy that although the dependent variable 8¢ is a function
of both y, and 1T, (27) is essentially an ordinary differential equation in
e in that only the partial derivative with respect to y appears. The
only precaution in considering (27) as an ordinary differential equation
is that in the solution, arbitrary functions of T arise instead of con-
stants (as in the case of an ordinary differential equation).

In order to formulate a well posed problem, appropriate boundary
and initial conditions must accompany the governing equation (27). The
initial condition is

ee(Yso) = eeo(Y) (28)

The density profile z(y) remains the same throughout the stationary pro-
cess, and hence is the same as the initial density profile.

The basic boundary condition is that the intensity at the outer
edge of the plasma equals the intensity delivered by the laser,

i(0,1) = dd/dt

But a boundary condition on temperature 0, must be developed. Equations
(17) and (23) combine to give

5/2
Pe 5 _az i
9T 2 \/i——_Z;
and the boundary condition is
5/2
%8, 5 az(0) 4o 29)

oT =0 2 J]?—:_W)— dt



If g(y) is such that 7(0) = 0, then the appropriate boundary condition
is on the first derivative with respect to y

529 32
__e a9
dydT

dg
d dt

= 208 (30)
y=0 yy=0

for £(0) = 0, and dz/dy v =0 # 0. Equations (28), and (29) or (30)

together with the governing differential equation (27) form a well
posed problem.

IV. DISCUSSION OF PARAMETERS

It is Important to know when a stationary frozen non-thermally con-
ducting plasma actually arises, i.e., under what conditions €, A, Ne,i<<1.
Certainly not all regimes of interest will satisfy these criteria.

One of the factors determining these parameters is the size and
density of the plasma. For this discussion, the plasma is assumed to be
overdense (i.e., the plasma frequency at the point of highest density is
greater than the laser frequency). Furthermore, to simulate a typical
nonuniform plasma, the density is assumed to rise linearly from zero at
the edge of the plasma and remain linear at least to the critical density
point (where plasma frequency equals laser frequency).

€ << 1. From (8), € = a, tP/R. R depends on both the density and
the critical density (which depends on the laser frequency).

n,. 4W2€Omec2 1
R = = [ 1 (31)
Vn 2 2
e e }\o Vn
e
The characteristic speed of sound ap depends in the usual way on the
characteristic temperature T,. T, becomes, applying (31):
Ao Vn_ (3o/A)
(0] ne o
T, = 5 (32)
4m°e.m c2 2
3 kﬁ___iiJi__]
2 2
e
Then € can be written
e = 2.3x 10 %0,/ /? Ao(Vne)B/th (33



with Jo/A in Joules per square meter, Ag in microns, Vne in electrons
per meter to the fourth, and tp in seconds.

QA << 1. Using Spitzer's electron-ion equilibration time with
(10)

A=2.3x 1065tp/(Jo/A)3/2(V )3/2 8 (34)

Ne,i << 1. Only the electron thermal conductivity is considered
since it is much larger than ion thermal conductivity. Using Spitzer's

thermal conduction coefficient, (11) becomes?

ng = 1.4 x 10747 ¢ (35/8)

5/2 16
e Ao

(ne)?/? (35)

Then the pulse time t;,, laser energy per unit area Jy/A, laser wave-
length Ao, and electron density gradient Vne arise as the key parameters
of the problem. With a particular laser pulse length tp and wavelength
Ao the various regimes can be. shown graphically as a function of Jp/A
and Vne. Figures 2, 3, 4, and 5 show when €, A, and ne are large or
small for the cases tp = 10~° s 1072 sec. and Ao = 1.06u, 10.6u.

The shaded regions in Figures 2-5 represent conditions for which g,
Ne, A < 1. Now the validity of a stationary frozen nonconducting solu-
tion found will not necessarily be valid near the lines bounding the
shaded region.

It is not always enough for the parameters to be small. If the
non-dimensional temperature is not of order omne, or even if the first
or second derivatives take on values not of order one, then the solu-
tion may be valid where not expected and may be invalid where not expected.
For example, if there is a large temperature gradient at some local point,
then significant thermal conduction may occur at that point even though
the remainder of the plasma is nonconducting. The frozen ion condition
can also break down while A is small. If the electron temperature is much
greater than the ion temperature, then Afg/6i (which appears in 14) is not
necessarily small even though A may be small.

Thus, once having solved the stationary frozen non-thermal conducting
case, it will be necessary to look at these effects and re-evaluate the
regimes in which the solution is valid.

It is of interest at this point to calculate the parameter 0. The
solution may take on widely differing character for different values of

6. From (9)

= 2.8 x 108/ (3o/8)3/ 2@ >/ 2, 10 (36)

10



V. ANALYTICAL SOLUTION

A study of the governing equations shows that the nature of the
heating depends on the size of the parameter .. 0« large corresponds
to Vne sufficiently small (such that the underdense portion of the
plasma is optically thick). The result is a "heating wave'" process
whereby successive layers are heated until they become nearly trans-
parent, allowing the beam to penetrate to a deeper layer. o small
corresponds to Vne sufficiently large that the underdense portion of
the plasma is optically thin. Then, the whole underdense region is
heated simultaneously. If o is sufficiently small, the laser will have
only a very small heating effect on the plasma and would be ineffective
in the production of a CTR plasma.

If the initial temperature of the plasma is much less than Top,
then another small parameter can be defined,

6.°0y) = u g(y) (37)

where the maximum value of g(y) is chosen to be one and | is the small
parameter. The governing equation is now

1
1 - =
_2.3 5/2 _ . 5/2.5/2, 2 2 ¢ dg 5/2 _ 5/2_5/2
2
+—2— [0, - ugl (38)

vl - ¢

If the final electron temperature is in the neighborhood of Tg, then
e will be of order one. Hence, during the hotter stages of heating,
the terms inj will be relatively small. If only terms of order one
are considered, (38) becomes

00 1-%z
g 3/2_ e _2__ 2> dr . 5/2 g
0=0 "5y "ST@-Day % ¥ 6_ + 0(u) (39)

This is designated the "hot equation'.

In the initial stages of the heating, 6g will be near 6,0 which is
of order u. For this case 8o must be rescaled; 0, = ueu where Su_is'of
order one. Then (38) becomes

11



1

1 -
_2.3 5/2 _ _5/2, _ 2 2z dg 5/2 _ _ 5/2
0=353 % e l-sza-ow % g "]
o] CZ
+ —=— [0, - gl (40)
Wraog o

This is designated the '"cold equation".

Solving the problem for 8.0 << 1 involves solving (39) and (40)
separately and then appropriately matching the two solutions to the
boundary conditions, initial conditions, and to each other. Solving
such a problem where different parts of the solution must be matched
with each other requires the method of matched asymptotic expansions
such as described in detail by Cole.!®

Solution to the Cold Equations

A significant parameter a/us/% appears in the cold equation (40)
which may be large or small depending on the magnitude of a. There are
two important cases, o >> /% or o << p3/2,

For o << w3/2, (40) becomes

1
2 =35 ar _5/2

23 5/2 5/2 5/2 3/2
= = 5 - - — = = [0 - +
0=3 oy [eu g 1 -3 Z(1l - ) dy [ u g1+ 0@/ )
Rearranging this equation gives
3 5/2 5/2 d 4 3/2

— 1 - = +— log ——— +

5y 198 [eu g ] 5y 108 — 0(a/u )
which is integrated

2/5
L
o = 1g >2 + MO 4 on*? (41)

H /1-c
£(t) is an arbitrary function of T that arises in the integration with

respect to y. 2(t) is found by applying the boundary condition, which is
(29) or (30). The result is

dt 2 .5/2 dzt
T " /

12



which is integrable

- O S
L = u5/2 (2 d + a)

where "a'" is the constant of integration. "a'" can be evaluated by ap-

plying the initial condition (28). Since ¢(0) = 0, a = 0 also, and
with (37), (41) becomes

5/2

5/2 5 o zd 3/2
o =[g7/°+= ——] + 0(a/u™" ) (42)
u 2 ]-15/2 /j_—:—g

the solution to the cold equation when o << u3/2.

For o >> u3/2, (40) becomes

3/2 2
_2u"" 9 5/2 _  5/2, &7 -
0=% 5y [9u g 1+ [9pl gl
1-3
32 1-2¢
2y 2°d o 5/2_  5/2 “3)
5 a t(l-7)dy “u &

3/2
Since the derivative term is multiplied by the small parameter U / /o,
the method of singular perturbations must be used for the solution.
Thus the solution to (43) is composed of an outer sclution Op, where
terms of order u3/2/a can be neglected, and an inmner solution 04 ,
where the temperature changes rapidly in a very short distance.

The outer solution is to order one,

/

0y = & 00> %/a) (44)

Finding the inner solution requires expanding the scale of y.

Y-y,

¥ =
U3/2/G

where yo = yo(T) gives the location of the "transition layer." The other
functions in (43), g(y) and Z(y), will be constant to order one in the
scale of ¥, For example,

3/2 3/2
— —d 3,2
y) = tlyy) + ua y —ds o tow /a™)
Y = Yo

u
o

L) = LG +

13



Then to order one, the inner equation is

90 2
3/2 771 _t7G0) 3/2
0=0 + — [0, - 8(y5)] + O™ “/a) (45)
i oy 5—:_ET§37 i 0 _
which can be integrated
3/2
Q. do ., 2
e N T L N TRl (46)
0, -g(@v,) T
i 0 1-1tly,)

m(T) is the function of time that arises in the integration with respect
to V.

The integral on the left side of (46) can be evaluated using ordi-
nary methods of integration. Conducting. the integration, (46) becomes

o0 \1/2
, (05\ /2 o\ 1/2 (_1) 3
= A g
§-( g) + 2 ( g) + log S 172 (47)
(—i) +1
g
2
- —L1 e - 25 4 ¥ 0
[g(v )] V1 -1¢

The complicated expression on the left side (47) can be expanded for
limiting values of @i/g.

For Oj/g near one, (47) can be solved as an expansion for 0;/8,

2
1 8 z- (o) =
0, =g {1+4ep—2—r [ -Sunm - =L 7
1 ey 1% 3 A= Thy
+ 06> %/0)

which is valid for Oi/g -1<<1.,
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. As y goes to positive infinity, ©4 is seen to reduce exponentially
fagt to g which is just the outer solution (44). Thus the inner solu-
tion on the positive ¥ side of the tramsition layer.

For Oij/g much larger than one, (47) can be again solved as an ex-
pansion,

2
3 3 yo) = 12/3 3/2
0, = Bmm - 2 —8 51234 03?0 (49)
v 2 - TGy)

which is valid for Oj/g >> 1. ©Oi is seen to grow very large if y gets
large negative. Hence, for large negative y , (49) must be made to
match the solution to the hot equation.

Solution to the Hot Equation

When the energy in the laser pulse is large compared to the initial
internal energy of the plasma, then generally (6e) final/fe® >> 1. In
this case (Be)final 15 essentially independent of 6,°(y). The "hot equa-
tion" (39) governs this case. Dividing (39) by 6, gives a linear first
order equation in 0g3/2,

3/2 _1
P 317 ag 32 _3_ &’ o0
Jy 5zl -1¢) dy e 2/1_“_C_
which can easily be solved to give
B = ___Efii___ { U3 y £Z£E_QZ___ }2/3
e 175 e -3 ¢ 1/5 + oG
a-10 o (1-70)

The function c(T) that arises in the integration with respect to y is
determined by applying the boundary condition (29%) or (30),

LemP?<2 o2
or
e = o> G o+ )3
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b is the constant of integration and will be determined by the matching
with the cold solution. Hence,

2/5.2/5 y ,7/5 2/3
ee = LQT {(5 o + b) -:21 Z/SI E—LS } + o(w) (50)
(1-17) o (1-20

The expression (50) is only physically realistic when the term in braces
is greater than or equal to zero. It is seen that given a T, this term
is positive for y less than a certain value.

The physical impossibility of its being negative is seen if the re-
sulting expression for i(y,T) is written using (24).

ao
.5 35 3 o507 P ey P13 A
—{(Ed>+b) -5 0 j 1/5} ~5 375
°@-7 0

The term in braces becoming negative corresponds to the intensity becom-
ing negative which is impossible. The hot solution is only valid for
positive values of the term in braces. The cold solution (45) must be
used elsewhere.

If a2/5 << 1, (50) can be expanded with a?/5 as the small param-
eter

2/5 _2/5
o, =L o+u)?7 400 (51)

e (1 - g)l/S

Matching Hot and Cold Solutions

In the various expressions that compose the solution (42), (44),
(47), and (50), various unknowns arose: b, m(T) and yo(t). These
unknowns will be determined by matching the different components with
each other for the possible ranges of the parameter o.

o << 1572

The cold solution is given by (42). The first term in brackets
is of order one and the second term is of order a/u5/2 and is rela-
tively small. Then (42) can be expanded about g(y) (where g is non-
vanishing) giving

+ O(a/u3/2) (52)

o zd
6 =g+

5/2 3/2
u u/ g/
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It is immediately seen that at the end of the heating (% = 1), the
term in a/u®/? is still small compared to g and thus there is no need
to seek a hot regime. The temperature 8¢ remains in the cold regime
throughout the laser pulse and is governed by (52).

Physically this means that very little of the laser energy is ac-
tually absorbed by the plasma. The whole underdense region is penetrated
by the heating so that a reflected light wave will arise. Since the
intensity of the reflected light will be imperceptibly diminished due
to weak absorption, its effect will be to roughly double the heating
due to the incident light, i.e., the term in a/u®/? is doubled.

Neglecting the effect of the reflected wave, the temperature
produced is

+ 0 (oz/ul/2

8 =06_°(y) + o ce ) (53)

° o1 Y2 g

This is shown schematically in Figure 6 for a linear density gradient,
a constant initial temperature, and for a/us/? = 1/10.

u5/2 << @ << u3/2

The cold solution is again given by (42), but now the term in

oc/us/2 dominates the term of order one. Expanding about the term in
o (where ®, 7 are non-vanishing) gives
205 23S )23
0. = + 0(1) (54)

U U a - ;)1/5

This must match with the small o limit of the hot solution (51). The
matching requires that the constant b in (51) be zero. Once again the
entire underdense region is heated and a reflected light wave will a-
rise whose intensity will be diminished little since o is small. The
effect of the reflected wave then is to double the temperature in (54).

Neglecting the effect of the reflected wave, a composite solution
can be constructed which possesses the features of the hot solutiomn
(51) and cold solution (42),

2/5

_n o5/2 ., 5 _ard 2/5
RO +3 — 1 + 0@’?) (55)
32
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The cold solution is given by an outer solution (44) and a
transition layer solution (47). As was seen before, the transition
layer [located at yo(T)] was matched with the outer solution for
y > yo(t). Now, (47) must be matched with the hot solution (50).

The asymptotic limit for @ large is given by (49). The limit of 6¢
small in the hot solution must be calculated. This matching problem
1s demonstrated schematically in Figure 7. 0e in (50) achieves small
values near the point where the term in braces vanishes. Given T, the
term in braces vanishes at some yy = yw(T). Expand the scale of y in
the neighborhood of yy ,

where V is a small parameter to be determined in the matching. Then
(50) becomes

2
(v, :
6= Bov—2— (-y) 173

e 2 + o)
vl - C(yw)

3/2
This can be matched to (49) if v=u /o, m(1) = 0, and yo(1) = y, (1),

in which case yyy =5 .
A composite solution valid over all y cannot be written in this

case but the components can be summarized,

2/5.2/5 3/5 2/5 7/5 2/3
o, =t iEn -3 j L a3 4 o
a-o o -

for y < y (1)

o 52
Be = ee + 0(u / Jo)y for y > yW(T)

6 9
[6,° 012 1 3 =551%2 + 2055 =% 12
e w
6 1/2
e _ (56)
. ooy 1 ar’(y,) 1 0
+ log = == |y -y 1+ 00 /0
° - TGy v

/
o]
0, (yw)
for y -y = 0(u3/2/d)
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A "heating wave'" is seen to arise which separates hot parts of the plasma
from cold parts. The location of the 'wave," yw(T) is given implicitly by

3/5 2/5 oY% 775
o) =2a T2y (57)
2 2 a- o
(o]

As ¢ increases from zero, yy is seen to increase monotonically with & .

If o0 is very small, the wave travels almost infinitely fast and reaches
the critical density very early in the laser pulse. From that time on, the
laser heats the entire underdense portion of the plasma simultaneously and
the temperature profile produced is

2/5

6 = (052, /5

e 5 + 0(oc4
/1 - C

sH) (58)

A "hot spot" is generated near [ = 1, the critical density. Of course the
original expression for absorption coefficient (17) breaks down very near

£ = 1 and remains finite at the critical density. Nevertheless, a hot spot

is produced in this region. This limit can be labeled the "simultaneous heat-
ing case." 1In this case the actual temperature produced will be roughly

twice that given in (50) since the light wave is reflected at the critical
density and travels backwards through the region with very little intemsity
attenuation [see (16)]. Hence, most of the laser radiation is lost to re-
flection.

If o is larger than a certain value, the wave travels much more slowly
and does not even reach the critical density by the end of the laser pulse.
Hence, in this case there is no isolated hot spot as for o small. This limit
can be termed the "heating wave case' since a heating wave continues to move
into the plasma throughout the laser pulse. The heating is by no means "simul-
taneous.'" 1In this case all of the laser energy 1is absorbed.

In summary, stationary-frozen-nonconducting heating of a cool plasma will
occur in one of four regimes. If o << u5/2, then the plasma is only slightly
heated and the heating is simultaneous. A weak hot spot occurs at the crit-
ical density and nearly all the laser energy is lost to reflection. If
u5/2 << o << p¥/2, the plasma is heated to temperatures much hotter than the
initial temperature but still most of the laser energy is lost to reflection.
The heating is simultaneous and a stronger hot spot appears. If
ua/z << o << 1, a very rapid heating wave traverses the underdense region early
in the pulse. After that the heating is simultaneous and a significant hot
spot appears at the critical density. During the simultaneous heating stage,
a significant part of the laser energy is lost to reflection but not as much
as in the previous cases. If o >> 1, a much slower heating wave propagates
into the plasma and the wave does not penetrate all the way to the critical
density. No hot spot or reflected wave appears, and all of the laser energy
is absorbed.
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VI. APPLICATION TO A LINEAR DENSITY GRADIENT

The solutions given in the last section can be easily calculated for
a linear density gradient, 7 = y. These results for three different values
of the parameter 0O are shown in Figures 8, 9, 10,

Figure 8 clearly demonstrates the heating wave moving into the plasma
In this case (0. = 1000) the heating wave only gets about halfway to the
critical density by the end of the laser pulse. In Figure 9 (o = 4) the
heating wave reaches the critical density just before the end of the laser
pulse, and a weak hot spot is generated at the critical density. In
Figure 10 (0. << 1) the heating wave travels almost infinitely fast in
traversing the underdense region and hence is not shown. A strong hot spot

arises at the critical density.

While Figures 8, 9, 10 give the analytical features of the solutions,
they are given in terms of dimensionless quantities and do not show clearly
the temperatures and other conditions that are attained. Figures 11, 12
are summary plots for laser wavelengths Ay = 1.06u and 10.6u respectively.
The '"maximum temperatures" given are the maximum temperatures without the
hot spot. Naturally, when a hot spot appears, there will be a much hotter
temperature in a very localized region. The 'plasma length' given is the
thickness of the plasma that is irradiated by the laser. This thickness
will be R for the simultaneous heating case, and will be somewhat less for
the heating case (since the wave does not traverse the whole underdense

region).

It is noted that the 10.61 laser heats in the simultaneous heating
regime for much smaller electron density gradients than for the 1.06u
laser, i.e., a relatively long plasma may be in the simultaneous heating
regime under 10.6u radiation but in the heating wave regime under 1.06H
radiation. It is also seen by comparing Figures 11 and 12 that the tempera-
tures achieved are independent of the laser wavelength in the simultaneous
heating regime. However, the longer wavelength heating produces higher
temperatures in the wave heating regime.

It has been previously noted that not all the radiation is absorbed in
the simultaneous heating case but that much is lost to reflection. It is
important to know what fraction of energy is absorbed -- both from the
standpoint of efficiency and from the fact that reflected radiation may
damage the laser. Integrating the temperature for o << 1 (58), over the
thickness of the underdense region, the fraction of energy absorbed can be
calculated. This fraction is doubled to take into account the absorption
of reflected light, and the result is

Jabs i 2(2 a)2/5 1.7/5 4 (59)
J 2 _ 1/5
o (1 -28)




which for a linear density gradient reduces to

3
28 _ 3.7 /3

0

(60)
These results are shown in Figure 13.

VII. CONCLUSIONS

Analytic solutions have been developed for the laser heating of a one-
dimensional plasma under the assumption that the plasma is stationary, non-
thermally conducting, and that only the electrons are heated (the ions being
frozen at their initial temperature). These assumptions were found to be
reasonable for many cases of interest. In these cases, the laser pulse is suf-
ficiently short that the processes of plasma motion, thermal conduction and
electron-ion equilibration don't have time to make a significant effect. These
assumptions reduce the problem (aside from equations of state) to a pair of
equations; a radiative transfer equation and an equation for the temperature
containing an energy source term. These equations were combined and solved for
all ranges of remaining parameter 0 by the method of matched asymptotic expan-
sions.

The use of a one-dimensional plasma was motivated by the need to make the
mathematics tractable. No real plasma is strictly one-dimensional but many
plasma geometries of interest are nearly one~dimensional and the analytic re-
sults of this paper can be applied to such plasmas with reasonable accuracy.
An example of thermonuclear interest is the longitudinal heating of a column
of plasma that has a uniform density across the column, such as might be found
in a plasma focus or a theta pinch. Another example is the radial heating of
such a column which is quasi-one-dimensional if the absorption length 1/|<O is
less than the radius of the column. Such a plasma with a number demnsity of
10'%/cm® heated by a longitudinally aimed laser of wavelength 10.6u to a temper-
ature of 10 Kev could be contained with a magnetic field of 3 megagauss (as
might be developed in a plasma focus). For plasmas that are not nearly one-
dimensional, the results of this study are still valuable in understanding
qualitative results.

The analytic solution shows markedly different behavior for different
ranges of a. For thick plasmas (corresponding to o large)the response is
characterized by a heating wave proceeding into the plasma. Behind the wave is
a hot nearly transparent plasma being irradiated by the laser. Ahead of the
wave is an unheated opaque plasma. Physically, the motion of the wave corres-
ponds to the heating of successive layers of opaque plasma to temperatures at
which they become transparent and allow the radiation to pass on to deeper
layers. TFor o greater tham a certain distinct value (depending on the density
profile but always on the order of one), the heating wave fails to penetrate
to the critical demnsity by the end of the laser pulse. Then none of the radia-
tion is reflected back to the critical density.
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For smaller ., the heating wave reaches the critical density before the
laser pulse ends. At that time, reflection occurs at the critical density
and some of the light is reflected. Although the heating is simultaneous
once the heating wave traverses the underdense region, it is by no means
uniform —— an extreme hot spot is created at the critical demsity point. For
relatively thin plasmas (0. somewhat less than one) the heating wave traverses
the underdense region extremely fast and all but the earliest stages of the
heating are "simultaneous."

For o smaller than the small parameter u3/2, the entire heating process
is simultaneous with no heating wave at all. The parameter U is a measure of
the initial temperature. The efficiency of the heating drops further as more
of the laser energy is lost to reflection. For a even smaller (less than p%/2),
the heating is so ineffective that the temperature is scarcely changed at all.

It is clear that in the preparation of the plasma to be heated, the tem-
peratures (or other conditions sought) can be optimized by proper choice of
the parameter 0. For a given laser energy per unit area and wavelength, o
depends on the density gradient. Hence, proper tailoring of the density
gradient beforehand will give the best results, whether that be maximum
temperature or maximum yield from a thermonuclear reaction.

The solution found in this paper is only for a stationary, non-thermally
conducting, frozen ion plasma. But the solutions for a stationary conducting
plasma, and a stationary equilibrium plasma (electron and ion temperatures
the same) are closely related. In the case of a conducting plasma, the ef-
fect of conduction will be simply to smooth out the nonuniformities in tem—
perature that are produced. In the case of a plasma with electron-ion
equilibrium, the effect of the equilibration will be to divide equally the
energy between the electrons and ions. In this case, the result is almost
identical to the frozen ion solution presented in this paper. These two
problems are interesting extensions of the work in this paper and form topics
for further study.

ACKNOWLEDGEMENT'S
The authors are indebted to Professors A. Hertzberg and J. Kevorkian for

their valuable suggestions in the preparation of this work as well as the
writing thereof.

22



10.

REFERENCES

W. J. Fader, Phys. Fluids 11, 2200 (1968).
R. E. Kidder, Nuclear Fusion 8, 3 (1968).
J. Dawson, P. Kaw, and B. Green, Phys. Fluids 12, 875 (1969).

Ya. B. Zel'dovich and Yu. P. Raiser, Physics of Shock Waves and High

Temperature Hydrodynamic Phenomena (Academic Press Inc., New York,
1967), Vol. II, Chapter X.

R. G. Rehm, submitted to Phys. Fluids.

J. W. Daiber, A. Hertzberg, and C. E. Wittliff, Phys. Fluids 9, 617
(1966).

M. Lubin, Bull. Am. Phys. Soc. Series 2, 13, 320 (1968).
L. C. Steinhauer and H. G. Ahlstrom, submitted to Phys. Fluids.

L. Spitzer, Jr., Physics of Fully Ionized Gases (Interscience Publishers,
Inc., New York, 1950).

J. D. Cole, Perturbation Methods in Applied Mathematics (Blaisdell
Publishing Co., Waltham, Massachusetts, 1968).

23



density
P

critical
density

distance

Figure 1. Plasma Configuration

2k



’h t
v

7“ AR I e TVI\\I

10°° t,=10sec. A =1.06p T

|025 1 , 4

29 4

1023 : ——————+- :

10 107 108
Jo /A —joules/m?2

Figure 2. Region of Validity of the Stationary, Nonconduct-
ing Frozen Limit for a Nanosecond Pulse from a

Nd+ Glass Laser

25

7
A
\‘\



€>
-

Z| ////////
026 - ’ /
i N

(o)

J, /A joules/m?

Figure 3. Region of Validity of the Stationary, Nonconduct-

Nd+ Glass Laser

26

ing Frozen Limit for a Picosecond Pulse from a



///////////




.

e

€
o°  10®  10®  10° 10"
: 2
Jo /A —joules /m
. Region of Validity of the Stationary, Nonconduct-
ing Frozen Limit for a Picosecond Pulse from a

aaaaaaaaaaa



electron temperature 4>
over initial electron )

1.4
/8

temperature

oONDAODO

distance vy

Figure 6. Temperature Distribution Produced when

5/2

a/| = 0.10

29




a » ,u.3/ 2
hot solution
EL

electron
temperature

transition solution
breaks down
|
|
|
|

transition
layer solution

breaks down
1

hot solution 1< matching
l
|

colq
solution

A= o)
distance

Figure 7. Matching of the Hot Solution to the Transition

Layer and the Cold Solution



¢ =10
T
8
-6 B .6
ST 4
Te
2/5
Q T0 -
2
3 -
2 -
A -
heating wave
0 ; ; . ; +
) A 2 3 4 5

y = x/R
Figure 8. Temperature Distribution for a Linear Density

Gradient with o = 1000

31




1.4
nearly simultaneous heating
: weak
12 T hot
¢ = 1.0 : spot
110 1
___zfg 6
a TO
4
6
.2
4 1
2 -
heating wave
O [ l 0 []
o) 2 4 6 .8 1.0

y = x/R
Figure 9, Temperature Distribution for a Linear Density

Gradient with ¢ = 4

32



3.0
hot Spot

25

simultaneous heating

1o 4 4

o |

o v O g T g - s

o) 2 4 6 8 L.O
y = x/R

Figure 10. Temperature Distribution for a Linear Density

/2

Gradient with uS << a << 1

53



| )‘0 = Lo6 hot spot
a « |

30

10°° ¢

l 029

28
¥n

27

26

|025 1

I024 |

23 4 : : S ————

10

T [ A o o 10° 10"

Jo /A —joules /m?

Figure 11. Summary of Plasmia Conditions which can be
Achieved for a Linear Density Gradient with a

Nd+ Glass Laser

3l



Figure 12.

Ao = lO6 L
30
10 < 1.3/2 o
a=pu T, = 10eV

|cf!9' Jmm

1028 Imm__| plosma length heated
Vn, |
i hot spot Q«li

107 108 10° 10° 10"
Jo /A -—~joules/m2

Summary of Plasma Conditions which can be Achieved

for a Linear Density Gradient with a CO, Gas Laser

35



! 100% J—
g
P
abs //’
Jo //
1+
ol 4
/
I
0° 18° 10t 16 102 i | 10

a=kK.R

o

Figure 13. Fraction of Laser Energy Absorbed for a Linear

Density Gradient Plasma

36 NASA-Langley, 1971 — 26~ CR-1854



